Corrigendum to “Toroidal and Klein bottle boundary slopes” [Topology Appl. 154 (3) (2007) 584–603]

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-extendability of toroidal polyhexes and Klein-bottle polyhexes

A toroidal polyhex (resp. Klein-bottle polyhex) described by a string (p, q, t) arises from a p × q-parallelogram of a hexagonal lattice by a usual torus (resp. Klein bottle) boundary identification with a torsion t. A connected graph G admitting a perfect matching is kextendable if |V(G)| ≥ 2k + 2 and any k independent edges can be extended to a perfect matching of G. In this paper, we charact...

متن کامل

Spanning subsets of toroidal and Klein bottle embeddings

Let Φ be an embedding of graph G in a surface S. If there exists a subset K of S bounded by a subgraph of G which contains all the vertices of G, then K is called a spanning subset of Φ. Examples of spanning subsets include spanning discs, spanning annuli with some number of holes (called planarizing sets in some papers). A spanning subset may provide a simpler structure but still contain enoug...

متن کامل

Uniqueness of Walkup's 9-vertex 3-dimensional Klein bottle

Via a computer search, Altshuler and Steinberg found that there are 1296 + 1 combinatorial 3-manifolds on nine vertices, of which only one is non-sphere. This exceptional 3-manifold K 9 triangulates the twisted S -bundle over S . It was first constructed by Walkup. In this paper, we present a computer-free proof of the uniqueness of this non-sphere combinatorial 3-manifold. As opposed to the co...

متن کامل

Drawing Disconnected Graphs on the Klein Bottle

Résumé We prove that two disjoint graphs must always be drawn separately on the Klein bottle in order to minimize the crossing number of the whole drawing.

متن کامل

The Hull of Rudin’s Klein Bottle

In 1981 Walter Rudin exhibited a totally real embedding of the Klein bottle into C2. We show that the polynomially convex hull of Rudin’s Klein bottle contains an open subset of C2. We also describe another totally real Klein bottle in C2 whose hull has topological dimension equal to three.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2013

ISSN: 0166-8641

DOI: 10.1016/j.topol.2012.12.005